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There has been recent interest[l-4] in the electroweak corrections due to heavy 
particles with a characteristic mass A greater than mz. If the heavy particles 
participate in SU(2)xU(l) symmetry breaking then they, when integrated out, will 
generate additional effective interactions involving the electroweak gauge bosons and 
the triplet of Goldstone bosons. These interactions are very conveniently described 
by a gauged chiral Lagrangian. 

All parameters in this chiral Lagrangian are finite quantities renormalized at the 
Z mass scale. We consider terms in this effective theory at order p2 andp4 in the 
low energy expansion. The electroweak corrections induced at these orders are not 
suppressed by powers of mzlh, unlike terms of higher order in the energy 
expansion. Thus the chiral Lagrangian approach immediately focuses our attention 
on the finite parameters most important to electroweak corrections. 

In this note we will consider the possible weak isospin and CP conserving 
corrections to trilinear gauge vertices. From the analysis in [5] one finds that there 
are only two such terms at O(p4) other than the kinetic terms. We adopt the notation 
in [S] and write 

Lw = T Tr( VPUtV?J) - ‘/2Tr[ W,,Wp”} - ‘/2Tr(B&l~v] 

- iL.g Tr{g’BPvWUPU’f + gWPvWufPU) 

+ Llogg’Tr( UtBPflv] (1) 
V,J.I 2 dPU-igUWP+ig’B&J, W = W,(x)z, , B = B(x)z3 , U = exp(-2in,(x)z,lF) 
7t,(x) is the Goldstone boson triplet. We retain only the 23 part of the hypercharge 
generator in BP,, since we are assuming that the sum over the hypercharges of the 
heavy fermions vanishes. Also for our purposes we should not apply equations of 
motion to eliminate terms. But there is only one additional independent term which 
is usually eliminated by the equations of motion, Tr( ( VI VMI) 0, Put} ,[5] and this 
term contributes neither to a trilinear gauge vertex or to a gauge boson self 
energy.[ 11 

The Llo term does contribute to gauge boson self energies via the term 
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This “oblique” correction will end up correcting the Z and A couplings to the 
charged W. This correction will be in addition to the explicit trilinear vertices in the 
Lg and Llo terms. 

We start by making the conventional transformation to the mass eigenstate basis. 
W3P = QZ’~ + seAlp BP = -seZp + ceAlp 

(3) 

ce=& se= &+-g 
(4) 

In this primed basis the kinetic terms for the neutral fields are: 

where 

&iIl = - $ [1-2~iz][~‘~~-; [1-2~i&‘i’~~]~+ ~fi~~~‘~uz’~~ (5) 

A AZ = 63 2 -se2)e2 L1o 
WI3 

AA = e2L10 
AZ=-e2Llo 

(6) 

(7) 

(8) 

An additional transformation is necessary to obtain standard kinetic terms. This 
transformation is uniquely defined if we are to remain in a mass eigenstate basis 
We treat the A’s as small quantities; our results henceforth are true to lowest order 
in A’s. The transformation is 

iTp= [l+ Az]ZP 
(9) 

A’p = [l + AA]A~ + AAzZ~ 
(10) 

In the unprimed basis the kinetic terms have conventional form. The Z mass is 

(11) 
where rni is the Z mass in the absence of corrections, and 

XZ =-e2L10 
(12) 

The transformation (9-10) modifies the Z and A couplings to everything else. 
The trilinear gauge vertices from the Tr[ W,,W~“] and Tr(Bp,uB~v) terms are, in 
terms of the pruned fields, 

L&V = -ie$f ( Wpv +wt7Yv - wpvw~+z’“) 

- iezWp+WJpv - ie Wp+W&‘pv 
(13) 



3 

The transformation to the unprimed fields redefines the charge 
e* = [l + AA]e (14) 

But the s&s factors also require attention. It is convenient to define the following 
weak mixing angle[6] in terms of well measured quantities. (cr*-l = 128.8 zk 0.1) 

sz = sin(ez) cz = cos(ez) (15) 
s&L 7ca* 

fiGprn2 (16) 

The relation between sz and so is found from (1 l), (14), (16) and the following. 
se2Q2 = - 

fiGFrnz2 (17) 
By converting s&e to ~$2 and by transforming to the unprimed fields we obtain 

L&I = -ie,$fO(Wpv+WpZv- WpvWp+Zv) 

- ie,zic’W sz z p +WyZpv - ie, Wp+Wdpv 

8% ~=K~-~=Az-AA+AAz~+ AA -& 
co2 - so2 

(18) 

(19) 
[with (19) it is easy to incorporate other sources of oblique corrections, such as 

isospin violating effects or the effects of Z and A mixing with a new U(1) gauge 
boson. The appropriate expressions for the quantities AA, AZ, AM, and & may be 
found in ref. [7].] 

We now add to (18) the corrections coming from the explicit trilinear gauge 
vertices in Lg and Llo. These terms only correct the vertices already present. Other 
possible trilinear vertices can only originate in terms in the chiral Lagrangian which 
violate weak isospin or CP or are higher order in the energy expansion. Combining 
the corrections and expressing things in terms of Lg and Llo we obtain 

Lwwv = -ie*$f(Wpv+WpZV- Wpv wp+zv) 

-ie*~Kzw~tw~~V-ie*K~w~tw~~v 
(20) 

(21) 
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q-1=-; (co2 - se2) e 2 
Q2Slj2 

&I + 2e2 
a2 - se2 

ho 

1 (22) 

Q-I=-- eL(L9 +L10) 
se2 (23 

For illustration we may choose the typical value Llo = -0.045 for a one family 
technicolor model, as estimated in ref. [ 11. Lg may be estimated in a similar way; in 
low energy QCD Lg is similar in magnitude and is opposite in sign to L10.[5] The 
chiral log contributions from Goldstone boson and technipion loops to Lg and Llo 
are also e 

% 
ual in magnitude and opposite in sign. If we choose Lg = -Llo then we 

find that gl - 1 = KZ - 1 = -0.023 and KA - 1 = 0. Of course the zero is not to be 
taken seriously, but some cancellation in the contributions to KA can be expected. 
This is unfortunate, as is the rather small corrections to the Z couplings. Clearly, 
these effects will be difficult to see in the near future. 

On the other hand at high energies (but below A) these corrections may be 
enhanced by a factor (E/mz)2, by an effect known as “delayed unitarity”.[8] We 
shall discuss this for the process e+e- =S PW. This process will provide a good 
example of the chiral Lagrangian approach to electroweak corrections. We shall 
find that certain cancellations between oblique corrections and vertex corrections are 
made readily apparent in this approach. 

The AWW and Zww vertices are probed in the second diagram of Fig. (1). The 
uncorrected vertices are such that there is a cancellation between parts of the two 
diagrams, thus avoiding a total cross section growing with s. The corrections to 
these vertices disrupts this cancellation, thus implying that there is a piece of the 
cross section which grows like s. But since the corrections are small, unitarity 
would only be violated at energies above the scale A for which the effective 
Lagrangian does not apply. Unitarity is recovered in the underlying theory. 

The full amplitude arising from the second diagram of Fig. (1) may be written 
as follows (we follow the notation of ref. [8] as much as possible): 

’ 2 
M= +i$llI- pap (49% ma mp* m (24) 

’ I+@ (q, 4, P) = F1 (q - i#‘6”p + F3 [ Pat+@ - pPp] 
(25) 
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Fi = Qft + I3 - se2Q S 

se2 s-m2 
f? i=lor3 (26) 

13 = -1/2,0 for eL,S?R. Of the seven possible terms[8-91 in the most general 
rPap (q, 4, P), only the F1 and F3 terms receive corrections from Lg and Llo. The 

object is to decompose these corrections into contributions to ff, ff, f$, and ff. 
The uncorrected values are: 

@+J$)o=l 

@=$),= 1 
(27) 

The corrections are shown in the three diagrams a, b, and c in Fig. (2). The 
oblique correction in a is transferred to the vertices according to the transformation 

(g-1o)* We F” ;rI;;;*+ AAz z s -“m2 

(f~=$),=2Az+A/iz’~ 
(28) 

Factors of AA and AZ originate at each vertex in the photon and Z exchange 
diagrams respectively. The A-Z mixing means that the Z has an additional coupling 
to the Q of the electron; this gives the second term in the first equation. The c&s 
factor is present since the Z couples this much stronger to the Ups. The A-Z mixing 
also means that the Z has an additional coupling to the W proportional to the photon 
coupling to the W, this gives the second term in the second equation. We may write 
(28) in terms of Llo. 

(ff = $)= = (2 + ce~~~2s -kz2)e2L10 

(f~=+f~)a=(-2+ce~~~2)e2L~0 
(29) 

Another effect of the oblique correction is to shift the mass of the Z (see (11)). 

(f?=yQa=s-m4 2!!!2- = -2mz2e2L10 
s-mz2 (30) 

The corrections in b and c are simply read off from the appropriate vertices in 
the Lg and Llo terms. 



6 

V~>b = -$o cff>b = $0 
(31) 

vh = -$Lg 
(32) 

We now may add up the corrections a-i and add them to the uncorrected values. 

fiQ = 1 + 2+ce2-sl32 

( s 1 se2 s-m 2 
e2L10 

(33) 

fF=1-k ;22L9- $+2-5 
( 1 

e2Li0 
ce se (34) 

ff=2-2Lg+ 
Q2 c 

4se2-l +2ce2-se2 

SO2 Q2 s 1 
e 2Llo 

s-m 2 (35) 
f&2-2Lg- 1.4 

( 
m2 

%I2 Q2 s-mz2 1 
e2Li0 

(36) 

The dominant correction at high energies is the correction which grows like 
s/m2, and this occurs only in the production of longitudinal Wk. The amplitude for 
this correction is proportional to F3-Fl. Ignoring terms suppressed by mZ2/s we 
find 

(37) 
The first term cancels against the neutrino exchange diagram. Thus the leading 

(in s) correction is due entirely to Lg. The leading L10 contributions cancel between 
the diagrams a and b in Fig. (2). The chiral Lagrangian approach makes this 
cancellation clear as follows. The Llo term has no coupling of a photon or Z to two 
Goldstone bosons. Then it cannot contribute a piece to the Goldstone boson 
production cross section which grows lie s. And thus by the equivalence 
theorem[ lo] it cannot contribute a piece to the longitudinal W production cross 
section which grows like s. 

We show results for Lg = 0.045 and L10 = -0.045 in Fig. (3). Corrected and 
uncorrected quantities are indicated by solid and dashed lines respectively. The top 
two curves give the total cross section at a scattering angle 8 of 90 degrees. The 
next two curves are for the production of longitudinal Ws. This is clearly the 
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source of most of correction to the total cross section. These curves will of course 
peak and turn over when mass thresholds of the new physics are reached. 

The Q term in (37) means that the cross section for incoming et + ek (for which 
13 = 0) will also have a correction piece growing with s. From the lowest two 
curves in Fig. (3) we see that the total cross section grows rapidly in this case. Thus 
polarizing the electrons can serve to enhance that part of the total cross section 
which grows like s. 

We remark here that O@) terms in the chiral Lagrangian also will give 
contributions to the cross section which grow like s, and this may occur in the 
production of transverse Ws. But the coefficient of such a term has an explicit 
factor of 1/A2, and in the end this contribution to the total cross section will be 
suppressed by a factor of order (m&A)2 relative to the production of longitudinal 
WS. 

The results of this paper may be easily applied to the case of a new heavy 
family of weakly interacting fermions. The appropriate values of Lg and L10 follow 
from a one-loop calculation in a chiral quark model.[ 1 l] 

b=-&o=$$ 
(38) 

Nd = 4 is the number of doublets. This leads to results for the one-loop corrections 
to e+e- * VW in disagreement with those given in [8], in particular with eq. 
(4.3) of that reference. On comparing results for (F3 - Flhz = 0 we find that a 
factor of ([ca2 - Se2113 + QSf32j/cij2 in our result replaces a factor of Z3 in their 
result. 

We have found that the isospin preserving corrections to trilinear gauge vertices 
in a typical technicolor theory are rather small. These corrections are determined 
by the two parameters Lg and Llo, and both parameters may be estimated by 
comparing to low energy QCD. These corrections are enhanced in e+e- j W+W 

at energies well above threshold, and we found that the leading slm2 effects are 
determined solely by Lg. By calculating or estimating Lg and L10 the effects of any 
new isospin preserving physics may easily accounted be for. Other effects ate also 
easily introduced into the chiral Lagrangian. 
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Figure Captions 

Fig. (1) The two graphs contributing to efe- * W+W 

Fig. (2) Oblique and vertex corrections arising from the Lg and Llo terms in the 
Lagrangian in equation (1) 

Fig. (3) Solid curves include corrections and dashed lines exclude corrections. 
The various cross sections are plotted in units of the point cross section 
1 R = 4na2/3s. 
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